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bstract

One of the key problems in coping with deliberate or accidental atmospheric releases is the ability to reliably predict the individual exposure
uring the event. Furthermore, for the implementation of countermeasures, it is essential to predict the maximum expected dosage and the exposure
ime within which the dosage exceeds certain health limits. Current state of the art methods, which are based on the concentration cumulative
istribution function (cdf) and require the knowledge of the concentration variance and the intermittency factor, have certain limitations especially
hen the exposure time becomes comparable with the peak spectral time. The proposed method aims at estimating maximum dosage as a function

f the exposure time, mean concentration and the turbulence integral time scale. It is much simpler than the cdf models and it poses no restrictions
n the exposure time length. One of the important consequences is that it can broaden the capability of the ensemble average computational models
o estimate maximum dosage for any exposure time. The method has been tested successfully utilizing the ammonia field experiments FLADIS
16 and T17.
2007 Elsevier B.V. All rights reserved.
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. Introduction

One of the key problems in coping with deliberate or acci-
ental atmospheric releases is the ability to reliably predict
ndividual exposure during the event. Due to the stochastic
ature of turbulence, the instantaneous wind field at the time
f the release is practically unknown. To assess consequences
nd countermeasures, one needs to predict or/and estimate the
aximum expected dosage within a certain time interval at a

articular position. To achieve this, knowledge of the behaviour
f concentrations fluctuations at the point under consideration
s needed.

The usual methodology to treat this problem today is to try
o obtain first the knowledge of the mean concentration (C),

he concentration variance (σc) and the intermittency factor (γ).
he maximum expected concentrations with a given confidence

evel, are derived from the corresponding concentration cumu-
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gral time scale

ative distribution function (cdf) which is considered to be a
unction of C, σc and γ , by assuming a particular shape of the
oncentration probability density function [e.g. 1].

This theory has been developed for predicting maximum
nstantaneous concentration. However, it can be applied for time
veraged concentrations, provided that the time interval falls
ell within the inertial range of concentration spectra [2]. It
ust be noted that in practice, for consequence assessment, one

s interested in estimating the maximum dosage, i.e., the con-
entration integrated over a limited time interval. In addition, the
aximum dosage dependence on the integration time interval

s also required. In practical terms, the averaging time intervals
re of the order of a few seconds sufficiently far from the source.
his approach can be utilized to estimate dosages at the inhala-

ion time level which is of the order of 3 s or more. However,
n order to estimate dosages near the source or/and for longer
ime intervals there is a need to have some knowledge of the
urbulence time scales which are directly related to the peak

pectra time. The observation data have shown that as the inte-
ration time interval approaches the peak spectra time, there is a
istortion in the cumulative distribution function. More specif-
cally, the probability of concentrations higher than the mean

mailto:bartzis@uowm.gr
mailto:ts@ipta.demokritos.gr
mailto:sandron@ipta.demokritos.gr
dx.doi.org/10.1016/j.jhazmat.2007.04.078
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oncentration is significantly reduced. There is also an increase
f the intermittency factor indicated by the reduced cumulative
robability at low concentrations [e.g. 2].

From the above discussion it is clear that the application of
he above-mentioned methodology to calculate exposure times
bove which the received dosage exceeds the imposed health
imits presents certain problems. The method proposed in this
aper aims at removing these limitations.

. Methodology

In the present paper a new methodology is presented which
s much simpler than the cdf models and in the same time more
exible with respect to the dose time interval. The fundamen-

al problem to be solved is that there is a hazardous substance
elease and we want to estimate the maximum expected dosage
D(�τ)]max at a particular receptor over an exposure time
τ:

D(�τ)]max =
[∫

�τ

C(t) dt

]
max

= Cmax(�τ)�τ (1)

he maximum average concentration Cmax(�τ) is defined as

max(�τ) = 1

�τ

[∫
�τ

C(t) dt

]
max

(2)

nd C(t) is the instantaneous concentration at the receptor point.
hus, the problem is transferred to the estimation the maximum

ime averaged concentration Cmax(�τ).
Let us assume that at a certain receptor point a high time res-

lution concentration instrument produces one reading per �τ

econds. In an atmospheric boundary layer �τ could for exam-
le of the order of 1 s. Let us make the additional assumption
hat the instrument reading represents the time average con-
entration C(�τ) over the resolution time �τ. For simplicity
he concentration field is assumed stationary with a constant

ean concentration C̄ and integral time scale TL. Following the
oncentration signal for an infinite time, we will observe at a
articular time step a maximum time averaged concentration
alue Cmax(�τ). The signal can be numerically processed and
q. (2) can be used to estimate the maximum time averaged
oncentration Cmax(�τ) for any time interval �τ larger than the
esolution time interval.

The Cmax(�τ)/C̄ ratio is expected to have values much
reater than unity. As an example, for �τ = 1 s, the ratio could
each values in the order of 100 [1]. As �τ increases the ratio
s expected to decrease. For large enough �τ, the ratio tends to
ecome unity since practically the estimated values Cmax(�τ)
re reaching the mean value C̄. The time interval that Cmax(�τ)
tarts approaching the C̄ value is expected to be scaled by the
ntegral time TL.

The fundamental question is how Cmax(�τ)/C̄ varies with
τ. In fact, significant amount of work exists in the literature
orrelating Cmax(�τ) at different averaging times �τ. More
pecifically, suppose that for a particular location, the maximum
xpected concentrations averaged over the times �τ and �T are
max(�τ) and Cmax(�T), respectively. It has been demonstrated

T
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hat a proper correlation to relate these two concentrations is
3,4]:

Cmax(�τ)

Cmax(�T )
=

(
�τ

�T

)−n

(3)

he derivation of the given correlation in Eq. (3) is based on past
fforts to estimate maximum time averaged concentrations from
aussian plume at different averaging times [5]. A summary of

he relevant work is given in the IAEA Safery Series No. 50-SG-
3 [6]. The value of the exponent n for average times of 1 h or

ess seems to be affected mainly from the source height and the
tmospheric stability. The n values derived from field data show
range 0.2–0.5 for ground sources and 0.12–0.7 for elevated

nes.
In Eq. (3) let us select �T large enough so that Cmax(�T ) ≈

¯ . Based on the above-mentioned discussion �T is expected to
e scaled by the integral time scale TL. Thus, Eq. (3) can be
ransformed to the equation:

Cmax(�τ)

C̄
= a

(
�τ

TL

)−n

(4)

owever both Eqs. (3) and (4) have an inconsistency. When
τ becomes very large, Cmax(�τ) tends to zero which is not

orrect. Based on the above discussion Cmax(�τ) should tend
o C̄. To remove this inconsistency the following modification
s proposed for examination:

Cmax(�τ)

C̄
= 1 + a

(
�τ

TL

)−n

(5)

t should be noticed that for Cmax(�τ)/C̄ � 1 which is the case
or small �τ, Eqs. (4) and (5) become identical. The parameter
is a coefficient depending among others, on how many times
e need to multiply TL in order Cmax to reach C̄. Concerning

dditional dependency of parameter a, it is logical to expect that
s the concentration spread is higher the value of a is higher. In
act experimental evidence on Cmax(�τ)/C̄ behaviour suggests
hat the parameter a depends strongly on fluctuation intensity:

2 = σ2
C

C̄2 (6)

or example Lung et al. [1] analyzing their experimental data
ave shown by best experimental fit that

Cmax(1 s)

C̄
≈ 1 + 3.66i2 (7)

t should be noted that this experiment refers to a near ground
adioactive source Kr85 and concentration signals of 1 Hz
btained by highly sensitive proportional counter tubes [1].

The relationship (7) suggests:

= bi2 (8)
hus the following correlation Cmax(�τ)/C̄ is finally proposed:

Cmax(�τ)

C̄
= 1 + bi2

(
�τ

TL

)−n

(9)
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In order to examine the stationarity characteristics of each
sensor time series, initially the series sample autocorrelation
function (ACF) up to 50 lags was estimated. A visual exami-
8 J.G. Bartzis et al. / Journal of Ha

t is reminded that Cmax(�τ) refers to a stationary signal of
nfinite time and therefore is expected to have a specific value.
n statistical terms it represents a particular point in the pdf of
(�τ) corresponding to a specific critical value. The variance of
(�τ) is related to Cmax(�τ). In the literature there are several
ethods to estimate this variance [11]. However, the relationship

etween Cmax(�τ) and the variance of C(�τ) strongly depends
n the particular pdf distribution which is likely to change with
espect to �τ.

The parameters b and n in Eq. (9) can be estimated experi-
entally. One should keep in mind that in reality the available

oncentration signals have a finite duration rather than an infinite
ne. One restriction that we can put on the calibration signals
s that the sampling time is sufficiently long and the signals are
early stationary. In any case the stochastic nature of turbulence
ombined with a finite sampling time does not allow us to give
precise value of these parameters. What we are aiming at the
resent work is a first estimation of their “reference” values and
heir variability.

Indicative values of these parameters can be given even at this
tage. An indicative value of n = 0.3 is reasonable based on past
xperience especially for ground releases. Indicative value for b
an be derived from the work of Lung et al. [1]. It is suggested
n this work a reference value for TL = 20 s. From Eq. (7) we can
erive as indicative value b = 1.5. Summarizing, the indicative
reference” values for Eq. (9) constants are suggested to be

= 1.5, n = 0.3 (10)

n the remainder of the paper, the relations (9) and (10) will
e tested using the data from the FLADIS T16 and T17 field
xperiments.

. The FLADIS experiment

The original objective of the FLADIS field experiments was
o investigate dispersion of flashing releases of ammonia in the
tmosphere [7]. For the purposes of this study data from Trials
6 and 17 were utilized, which were the most successful trials.
he ammonia was released horizontally as a flashing jet. The

xperimental characteristics are given in Table 1 [8].

The sensors were mainly arranged in three arcs across an ideal
lume centreline in order to detect plume dimensions. The first
rc (Arc 20) is located at approximately 20 m from the release

able 1
LADIS experimental characteristics

arameter T16 T17

elease duration (min) 20 25
elease rate (kg/s) 0.27 0.27
verage wind speed at 10 m (m s−1) 4.4 3.7
ind direction (relative to centreline) (◦) −8 −28
mbient temperature (◦C) 16 16
tmospheric pressure (mb) 1020 1020
elative humidity (%) 62 63
riction velocity (m s−1) 0.41 0.31
urface roughness (m) ∼0.04 ∼0.04
onin-Obukhov length (m) 138 59
us Materials 150 (2008) 76–82

oint where the concentration field is expected to be affected
y the source presence and the local stability (heavy gas). The
econd arc (Arc 70) was placed at approximately 70 m, where the
oncentration field is expected to have still some influence from
he source but the stability is near neutral. The concentration
eld at Arc 235, which was placed at approximately 235 m, is
xpected to be passive gas with practically no influence from the
ource. Additionally several of the concentration sensors were
laced on masts at various distances from the release point. The
ata utilized in the present study are the concentration time series
ith 1 s temporal resolution.

.1. Data assessment

The purpose of the data assessment was to select the time
eries data set that are qualified for the present analysis. Every
ensor signal has been visually tested for obvious instrument
isbehaviour.
A further screening of the visually accepted data has been

erformed following the procedure shown in Fig. 1. Initially
ll sensors containing less than 750 data points were discarded.
ooking at the data more closely, this number was considered as
minimum threshold above which all the predominant features
f each sensor time series are assumed to be present. The remain-
ng sensors were examined for stationarity, discarding those that
ere not stationary. The concept of stationarity is important in

he present analysis as it provides a sound indication of no sys-
ematic change in the series mean and the variance. The formal

ethod for testing the stationarity of a time series is the “unit
Fig. 1. Flowchart for data screening.
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ig. 2. Statistical properties of the concentration time series at (X = 235, Y = 0,
CF, whereas the parameters A and n by a power-law fit to Eq. (12) (R2 = 0.856

ation was performed rejecting all sensors that exhibited slow
rop in the ACF values, exceeding the 95% statistical signifi-
ance level, defined as σ = ±1.96/

√
N, where N is the number

f data.
Then, the Phillips and Perron test [9] for the presence of

nit root which is a nonparametric method of checking for
igher-order serial correlation in a series was applied. The test
egression for the Phillips–Perron (PP) test is the first order
utoregressive, AR(1), process:

yt = μ + γyt−1 + εt (11)

ere μ and γ are model coefficients, and ε is assumed to be white

oise. The test examines the null hypothesis H0: γ = 0 against the
lternative H1: γ < 0. The t-statistic under the null hypothesis of
unit root does not have the conventional t-distribution. The PP

est makes a correction to the t-statistic of the γ coefficient from

a

c
v

able 2
LADIS T16: estimated parameters for stationary sensors (the source is located at po

ensor ID Xc (m) Yc (m) Zc (m) Sta

1 18.5 −8.9 0.1 S
2 18.5 −8.9 1.5 S
3 19.5 −5.9 0.1 S
4 19.5 −5.9 1.5 S
5 20 −2.9 0.1 S
6 20 −2.9 1.5 S
7 20 0 0.1 S
8 20 0 0.75 S
9 20 0 1.5 S
0 20 0 3 S
1 20 3.1 0.1 S
2 20 3.1 1.5 S
3 19.5 6.1 0.1 W
4 19.5 6.1 1.5 S
5 18.5 9.1 0.1 S
6 18.5 9.1 1.5 S
7 70 −10 0.5 S
8 70 0 0.1 S
9 70 0 2 S
0 70 0 4 S
1 70 10 0.5 S
2 68 20 0.5 S
3 231.5 −30 1.5 W
4 235.5 0 9 S

a S = stationary series, W = weak stationarity.
. The turbulence integral time scale is calculated by an exponential law to the

he above regression to account for the serial correlation in ε.
he correction is nonparametric since we use an estimate of the
pectrum of ε at frequency zero that is robust to heteroskedas-
icity and autocorrelation of unknown form. MacKinnon [10],
mplemented a much larger set of simulations showing the distri-
ution under the null hypothesis is non-standard, and simulated
he critical values for selected sample sizes. The test statistic
nd the critical levels at the 1 and 5% confidence intervals are
stimated. If the hypothesis is accepted at the 5% level, then this
s evidence of weak stationarity.

After performing the above-mentioned checking procedure,
he number of signals that have been selected for the present

nalysis were 24 for T16 and 18 for T17.

The most complete dataset, T16, is selected for the model
onstant refinement whereas the T17 data are used for the model
alidation.

sition (X = 0, Y = 0, Z = 1.5))

tion.a i2 A n TL (s)

8.71 27.71 0.34 16.70
4.85 22.67 0.37 15.56
2.49 12.55 0.28 24.80
2.70 14.86 0.31 18.79
0.54 2.83 0.28 21.35
1.02 6.16 0.36 15.67
0.26 1.70 0.27 30.38
0.30 1.64 0.24 34.43
0.39 2.38 0.24 22.67
0.64 6.30 0.38 19.00
0.24 1.30 0.24 26.54
0.31 3.16 0.37 13.22
0.46 2.14 0.21 40.78
0.70 5.45 0.35 18.37
1.53 6.72 0.28 19.09
1.52 10.79 0.37 15.50
0.87 4.77 0.29 20.07
0.48 3.06 0.25 34.02
0.48 2.89 0.25 31.72
0.49 4.76 0.29 38.45
0.30 2.61 0.28 25.11
1.02 5.94 0.27 50.12
2.52 13.63 0.29 31.28
0.41 4.10 0.32 30.74
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the quantity i TL . A linear fit without a constant term returns
the slope value, b, equal to 1.507 (σb = 0.088) and R2 = 0.9271.
This value is very near to the indicative value given in relation
(10). It is clear from the above discussion that FLADIS T16 data
0 J.G. Bartzis et al. / Journal of Ha

.2. Data analysis

Firstly, the effort has been concentrated on T16 accepted data
et in order to obtain the experimental values of b and n constants
ntroduced in the proposed model Eq. (9) and to compare these
alues with the indicative ones given in the relation (10).

The exponent n is estimated from the relationship equivalent
o model Eq. (9):

Cmax(�τ)

C̄
− 1 = A�τ−n (12)

pplying least squares fitting techniques.
The time intervals �τ selected in the analysis for each recep-

or are multiples of the time resolution (1 s) provided they do
ot exceed the half value of the signal duration.

The constant b is obtained from the parameter A via the
elationship:

= A

i2T n
L

(13)

he integral time scale TL, is estimated from signal autocorre-
ation function (ACF), using the exponential law [11]:

CF(τ) = e−τ/TL (14)

nd applying least squares fitting.
An example of the outcome of such analysis, illustrated in

graphical form, is given in Fig. 2, with respect to the sensor
X = 235, Y = 0, Z = 9). In Fig. 2(a), we can observe that the ACF
alues exhibit an exponential drop, and after the 27th lag the
alues are assumed to be statistically not different from zero. In
ig. 2(b), it can be observed that for different exposure times
τ, the ratio Cmax(�τ)/C̄ is well correlated with the power law

roposed by Eq. (12).

.3. The results

.3.1. The FLADIS T16 experiment
Table 2 summarizes the results of the above-mentioned anal-

sis for FLADIS T16 experiment. It is noted that for the Arc-20
ensors the vast majority of those exceeding the threshold num-
er (750 data points) have strong stationary characteristics. This
s explained from the short distance from the source. All the
rc-70 sensors with a sufficient number of samples are station-
ry, with an almost equal split of strong and weak stationary
haracteristics. For the Arc-235 sensors the majority exhibit non-
tationary behaviour and thus excluded from further analysis,
hilst a significant number has weak stationary characteristics.

able 3
LADIS T16: arc-wise analysis of n

ocation n TL

Minimum Mean Maximum Minimum Mean Maximum

rc 20 0.21 0.31 0.38 13.22 22.06 40.79
rc 70 0.25 0.28 0.30 20.08 33.26 50.12
rc 235 0.29 0.31 0.32 30.74 31.02 31.29 F

1

ig. 3. Estimate of n with respect to sensor ID for T16. The data mean is 0.302
nd the standard deviation 0.036.

able 3 shows the mean values of n and TL and their spread for
ach one of the three arcs.

The exponent n varies from 0.21 to 0.38 (both in Arc 20). No
bvious trend is observed to the mean values of n with respect to
he distance from the source, especially if one takes into account
he statistical spread of the values. The TL values vary from 13 s
Arc 20) to 50 s (Arc 70). The TL variation can be explained
rom the source proximity, local stability, ambient turbulence
roperties, instrument errors, etc. The highest spread in the val-
es for n and TL is observed on Arc 20 which is characterized
y the source proximity and the heavy gas effects.

In Fig. 3 the variation of the exponent n along the various
ensors is shown. The mean value n and its variance can be
erived as

= 0.302, σn = 0.036 (15)

t is important to note that the mean value of n is practically
he same with the indicative one given in (10). If one takes into
onsideration that the FLADIS and the Kr85 experiments are
otally different, this particular result adds an important element
o the present model validity.

In Fig. 4, the parameter A given in Table 2, is plotted against
2 n
ig. 4. Correlation of A to i2T n
L . The data follow a linear relationship with slope

.507 (σ = 0.088) and R2 = 0.9271.
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Table 4
FLADIS T17: the experimental parameters

X (m) Y (m) Z (m) Station.a Cmean (% vol) σc (% vol) TL (s)

20 −2.9 0.1 S 0.083678 0.18689 11.29
20 −2.9 1.5 S 0.027304 0.05764 10.19
20 0 0.1 S 0.50254 0.54822 17.24
20 0 0.75 S 0.21721 0.22543 19.40
20 0 1.5 S 0.083201 0.096948 13.98
20 0 3 S 0.011964 0.013768 13.30
20 3.1 0.1 S 1.3262 0.70044 22.55
20 3.1 1.5 S 0.1837 0.12108 11.62
19.5 6.1 0.1 S 1.5406 0.47474 37.85
19.5 6.1 1.5 S 0.28422 0.14979 8.87
18.5 9.1 0.1 S 1.3723 0.43882 20.16
18.5 9.1 1.5 S 0.23472 0.10734 18.16
17 12.1 0.1 W 0.47995 0.34627 13.56
17 12.1 1.5 S 0.11674 0.09874 10.78
70 10 0.5 S 0.047832 0.044237 29.48
68 20 0.5 S 0.13749 0.065861 25.01
65 30 0.5 S 0.10894 0.052211 20.01

2

a
(

3

c
m

h
v

F
w

27.5 50 9 W

a S = stationary series, W = weak stationarity.

nalysis strengthens considerably the validity of the model Eq.
9) with b and n nominal values the ones given in (10).
.3.2. The FLADIS T17 experiment
In Table 4 the FLADIS T17 experimental data set, that are

haracterized as stationary, are used to validate the proposed
odel.

d
c
v
s

ig. 5. Comparison of experimentally observed and model estimated Cmax for (a) �τ

ell within a factor of 2.
7.6606 × 10−4 12.472 × 10−4 70.12

More specifically the C̄,σc and TL parameters given in Table 4
ave been utilized in Eqs. (9) and (10) to predict the Cmax(�τ)
alues. Fig. 5(a)–(d) presents a comparison between the pre-

icted and modelled values for the time averaged maximum
oncentrations Cmax(�τ) obtained with averaging time inter-
als �τ = 1, 2, 5 and 10 s, respectively. The model parameter
pread confines the Cmax(�τ) error eventually within a factor of

= 1 s, (b) �τ = 2 s, (c) �τ = 5 s and (d) �τ = 10 s. The majority of the data are
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[10] J.G. MacKinnon, Critical values for cointegration tests, in: R.F. Engle,
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. Such an error can be considered quite satisfactory especially
or field data where the ambient turbulence properties cannot be
learly defined.

. Conclusions

The present work addresses the fundamental problem of reli-
ble prediction of individual exposure in case of deliberate or
ccidental atmospheric releases of hazardous substances. Based
n the above discussion the following conclusions can be drawn:

1) The usual methods, based on the concentration cumulative
distribution function (cdf) and requiring additional knowl-
edge of the concentration variance and the intermittency
rate, have limitations especially when the exposure time
is large enough to be comparable with the peak spectral
time.

2) The present model is much simpler than the cdf models and
at the same time more flexible with respect to the expo-
sure time length. The main idea is to correlate maximum
time averaged concentration and dosage with the mean con-
centration, the concentration variance and the integral time
scale. The whole approach has been restricted at this stage
only to stationary or nearly stationary conditions.

3) The model constants given in Eq. (10) have at this stage the
character of indicative reference values. These values will
need to be further refined in the future by utilizing additional
existing and new data. This refinement will include not only
the reference values but also their variability.

4) The new model has been applied successfully to the ammo-

nia field experiments FLADIS T16 and T17.

5) The FLADIS T16 data analysis has also shown that the
source proximity and the local stability are factors that seem
to affect more the spread of the model constants rather

[

us Materials 150 (2008) 76–82

than their mean value. This spread creates an error in the
model predicted maximum averaged concentrations, which
however is confined to within a factor of 2.

6) The new model can broaden the capability of the ensemble
average computational models such as RANS-CFD to esti-
mate dosage at any exposure time provided that are able to
reliably predict concentrations, concentration fluctuations
and integral time scales.
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